可解释性终极追问,什么才是第一性解释?20篇CCF-A+ICLR论文给你答案

213次阅读
没有评论

共计 418 个字符,预计需要花费 2 分钟才能阅读完成。

知识表示是人工智能的一部分,它关心代理人(agent)如何在决定做什么时使用它所知道的知识, 这是一门将思考作为计算过程的研究。严格来说知识表示和知识推理是同一研究领域密切相关的两个概念,但实际上知识表示也经常用来直接指代包含推理的广义概念,因此在这里沿用后者,即知识表示等价于知识表示与推理。这是一个涉及使用符号来表示一些推定代理人(putative agent)相信的命题集合的研究领域。 但是在另一方面,我们同时不想坚持这些符号必须代表代理人相信的主张。因为实际上代理人可能相信无数的命题,但只有一部分被表示出来。 而弥合所代表的事物与所相信的事物之间的差距将成为推理(reasoning)在知识表示中所承担的责任。因此,推理一般来说是对代表一系列代理所相信的命题符号进行形式化处理,以产生新的表征。 符号需要比它们表示的命题更容易操纵,因此它们必须足够具体,以便我们可以操纵它们(移动它们,拆开它们,复制它们,串起它们) 构建新命题的表征。

正文完
 
yangyang
版权声明:本站原创文章,由 yangyang 2024-08-05发表,共计418字。
转载说明:除特殊说明外本站文章皆由CC-4.0协议发布,转载请注明出处。
评论(没有评论)